
Redis for
Real-Time
Personalization
A PSEUDO CODE APPROACH TO IMPLEMENTING
PERSONALIZATION WITH REDIS

Contents

Redis and the Enterprise 3

The Personalization App Implemented in Redis 3

Capabilities That Support Real-Time Personalization 4

Functions Essential to Personalization 4

Fast Data Ingest 5

Caching/Session Store 6

High Speed Transactions 7

Analytics 7

Machine Learning 8

Job & Queue 8

Search 9

JSON/Geo/Graph 9

A Single, Unified Platform 9

Annotated Pseudo Code 10

Capture 11

Capture Data Structures 11

Capture Methods 12

Learn 14

Learn Data Structures 14

Learn Methods 16

Enrich Recommendations with Machine Learning Models 21

Personalize 22

Personalize Data Structures 22

Personalize Methods 22

Conclusion 24

PSEUDO CODE

Redis Real-Time Personalization 3

Redis and the Enterprise
For a certain class of developers, those who are involved in creating the highest per-

formance applications on the Internet in a variety of domains such as ad-tech, gaming,

ecommerce, fin-tech, and many others, Redis needs no introduction. It is well known

as a high-scale data repository that has grown into a deep and wide platform to sup-

port the most challenging types of applications in existence.

In the enterprise, Redis is still emerging as the platform of choice to support solving

the most challenging problems. Adoption continues to grow because Redis has new

and better solutions to problems that have traditionally been solved in other ways.

Part of the mission of CITO Research is to find important technologies for the Early

Adopters in the enterprise who are seeking to implement high value use cases.

CITO Research has worked to create a new form of explanation, a pseudo code walk

through of a real-time personalization application, an example that will bring the val-

ue of Redis for enterprise use cases clearly into focus.

If you are wondering how can Redis help your business applications or if you are a

Redis expert and advocate who wants to promote wider use of Redis, we hope this

content is useful for you.

The Personalization App Implemented in Redis
The process of delivering a high value personalized experience at scale has become

crucial to the success of so many applications and user experiences. But the amount

of data required from a wide variety of sources, the need to combine recent and

historical data layers into a unified whole, and the process of extracting signals from

the increasingly larger amounts of data that arrives in high velocity all represent key

challenges. In addition, the number of ways to process the data using various forms of

analytics, predictive models, machine learning, and AI to adapt to a customer’s de-

sires, along with ways we can offer personalization, have all grown dramatically.

At the same time, customers expect instant and up-to-date responses.

The process of
delivering a high
value personalized
experience at
scale has become
crucial to the
success of so many
applications and
user experiences.

PSEUDO CODE

Redis Real-Time Personalization 4

Being able to create applications and elegantly

orchestrate components to address these require-

ments in a way that delivers high performance is the

challenge of real-time personalization.

These requirements represent a massive undertak-

ing for application developers.

Explaining the power of a platform isn’t easy. Most

of the relevant vendors make the same claims.

We feel it is crucial to show in a concrete way how

Redis Enterprise technology allows applications

to deliver a powerful and speedy form of real-time

personalization.

We believe that this document will provide the need-

ed level of explanation. In this pseudo code descrip-

tion of how Redis can be used for real-time personali-

zation, you will find:

• A description of a generic architecture for re-
al-time personalization that explains the flow
of data and application functionality, and high-
lights important Redis calls, methods, and data
structures.

• An annotated set of pseudo code that illustrates
how elegantly and compactly real-time personali-
zation can be written in Redis.

• Commentary on the aspects of the Redis en-
terprise (Redise) platform crucial to supporting
real-time personalization.

Capabilities That Support
Real-Time Personalization
Personalization is about knowing your customer so

that you are able to provide them with an experience

that keeps them engaged with your business. The

experience you provide should be tailored to each

customer, and doing this requires collecting, analyz-

ing and accessing a multitude of data ranging from a

simple click to a customer’s location. While the task

can be daunting, using a versatile platform like Redise

lets you focus on building that real-time experience

rather than worrying about whether the website will

perform when everyone arrives at scale.

HIGH SPEED
TRANSACTIONS

CACHING

JOB & QUEUEFAST DATA
INGEST

MACHINE
LEARNING JSON/GEO

ANALYTICS

Functions Essential
to Personalization

NATIVE REDIS
CAPABILITIES

SEARCH

The following sections describe each of these capabilities.

PSEUDO CODE

Redis Real-Time Personalization 5

Fast Data Ingest
Native High Performance coupled with PUB/SUB

Personalization relies on knowing what is happening right now. That means using a

current stream of data, and not yesterday’s data.

One example of Fast Data Ingest is capturing all user interactions in real-time when

someone visits your website. You may have hundreds of thousands of users on your

website clicking or scrolling on various pages, as well as spending time reading articles

and blog posts, filling in a customer survey, reading or writing reviews, or using inter-

active chat features with salespeople. You want to be able to capture all of this data,

but the amount of data that comes through your website can almost be unmanageable

without the right tools. Being able to process everything you collect is a challenge, and

Redis can keep up with the volume with very few resources.

In addition to using Redis to handle a very large volume of “writes” data, you can use

the PUB/SUB functionality in Redis to trigger different actions or notify processes

about the actions a customer is taking. If users get coupons after viewing 10 product

videos, for example, you can use PUB/SUB to publish the user’s completion of these

actions to the coupon service, which subscribes to the action counting service. Once

notified, the coupon service knows to serve that user with a coupon, exactly the kind

of reaction to user behavior that is the heart of personalization.

TO LEARN MORE

• The NoSQL benchmark - Redis outperforms other NoSQL platforms by up to 8 times
https://redislabs.com/docs/nosql-performance-benchmark/

• Redis delivers millions of writes/second with 2 servers and >99% cost savings over
other products
https://cloudplatform.googleblog.com/2015/04/a-guy-walks-into-a-NoSQL-bar-
and-asks-how-many-servers-to-get-1Mil-ops-a-second.html

You can’t use
yesterday’s data
for today’s users.

https://redislabs.com/docs/nosql-performance-benchmark/
https://cloudplatform.googleblog.com/2015/04/a-guy-walks-into-a-NoSQL-bar-and-asks-how-many-servers-to-get-1Mil-ops-a-second.html
https://cloudplatform.googleblog.com/2015/04/a-guy-walks-into-a-NoSQL-bar-and-asks-how-many-servers-to-get-1Mil-ops-a-second.html

PSEUDO CODE

Redis Real-Time Personalization 6

Caching/Session Store
Intelligent, policy-rich caching and session state management for any data

Personalization relies on understanding as much as possible about a customer. The best systems know what

the customer did last year or for many years, as well as last month, last week, yesterday—and what he or she

did in the past few minutes.

The amount of data that creates a complete picture of a customer comes from many sources, but must also be

available in an instant to support real-time personalization.

Personalization is about understanding as much as you can about a customer so that you can provide that

customer with a tailored experience. If you know what that customer did 10 seconds ago, your stream of data is

very current. The caching layer serves personalized content with sub-millisecond latency.

There are different ways that the caching layer helps to personalize a website. If you don’t know anything about

a visitor, at a minimum, you can figure out her location by knowing the link she used to access your site. From

this, you know right away whether to display the US or an international version, for example.

Also, as the caching layer collects the most recent items viewed, you can use this information to present offers

to a customer after they’ve visited your site. You know what they’re interested in and what you can entice them

to purchase.

Any real-time personalization must have a powerful cache that can do two things:

• Assemble information from a variety of heterogeneous sources into a data structure that represents a rich
picture of the user.

• Deliver that information to the personalization routines in milliseconds.

Being able to handle scale is key because everyone can arrive at your site at once, and being able to access this

data instantaneously is integral to personalization. What makes Redis special is its very high speed and very

large scale. Redis can handle a variety of data and serve up content of any type, whether that’s metadata or

images, for example. Redis also has numerous policies that allow you to expire content, like when your session

expires or a user doesn’t close their browser. The content eviction, algorithms for expiration and notifications

for when something expires are all built into Redis, making it a very powerful caching layer.

TO LEARN MORE

• Redis for caching
https://redislabs.com/solutions/use-cases/redis-for-caching/

• 15 reasons caching is best done with Redis
https://redislabs.com/docs/15-reasons-caching-is-best-done-with-redis/

https://redislabs.com/solutions/use-cases/redis-for-caching/
https://redislabs.com/docs/15-reasons-caching-is-best-done-with-redis/

PSEUDO CODE

Redis Real-Time Personalization 7

High Speed Transactions
ACID with tunable consistency and durability

High speed transactions require ACID controls to ensure that a set of operations are

executed as a complete transaction — all or nothing. Including the right controls for

data durability and consistency is a key requirement that is important in many scenar-

ios, including payments, shopping cart interactions, order fulfillment, and customer

service.

TO LEARN MORE

• Managing transactions in Redise
https://redislabs.com/docs/managing-transactions-redis/

Analytics
Built-in analytics commands and modules

Personalization is about generating recommendations that are based on a user’s

profile, demographics and recent actions, along with a few business rules. If you know

basic information about your user, you can take them along a more specific path that’s

guided by business rules.

Recommendation engines can implement collaborative filtering, which is when you

lead users in a similar demographic along the same path because they liked the same

things, but haven’t made those same purchases. By using set intersections to compute

similarity scores, you can figure out what that person might be more likely to pur-

chase. To execute these analytics at high speeds and in real-time requires a database

that can support these operations.

Redis has built-in commands that can be used to implement real-time analytics such

as set intersections, score assignment, statistical estimation, etc., for what data mat-

ters most. Estimates based on a probabilistic data structure, such as a hyperloglog,

make for a more efficient database since storing and counting each item may require

too many computational and storage resources.

TO LEARN MORE

• An Ultra-Fast Recommendations Engine Using Redis and Go
https://redislabs.com/docs/ultra-fast-recommendations-engine-using-redis-go/

• Redis Hyperloglog: A Deep Dive
https://redislabs.com/docs/redis-hyperloglog-deep-dive/

If you know basic
information about
your user, you can
take them along a
more specific path
that’s guided by
business rules.

https://redislabs.com/docs/managing-transactions-redis/
https://redislabs.com/docs/ultra-fast-recommendations-engine-using-redis-go/
https://redislabs.com/docs/redis-hyperloglog-deep-dive/

PSEUDO CODE

Redis Real-Time Personalization 8

Machine Learning
Modules to implement ML and serve ML models 100x faster

Conversion rates are an important metric for websites, and machine learning can

work to improve these rates. Machine learning can help to lower the number of errors

in presenting the wrong content to a customer so that customers stay engaged and

spend more time in your application.

But the algorithms require significant memory, or else the scoring is too slow — the

model has to be sized just right to be able to work on the application layer. For models

to be accurate and precise, they need to be retrained with recent data as well.

Redis has the capability to store machine learning models in their native format, and

update and serve them with minimal computing infrastructure needed to implement

these algorithms at scale. The neural network module in Redis is simple feed forward

and embedded as a data type — it can train and serve models simultaneously.

TO LEARN MORE

• Webinar - Implementing Real-time Machine Learning with Redis-ML
https://redislabs.com/resources/webinars/past/?post_id=25513

• Real-time Intelligence with Redis-ML and Apache Spark
https://www.slideshare.net/RedisLabs/
redisconf17-realtime-intelligence-with-redisml-and-apache-spark

Job & Queue
PUB/SUB and Lists for job & queue management

Personalization works best when there’s seamless coordination of the work that

needs to be done and how that work is assigned. Apps need to pre-compute steps to

get ahead. That means, if a user connects to his bank, for example, and starts catego-

rizing transactions, the queues get instantiated and the app begins to serve up sugges-

tions for the next transaction.

TO LEARN MORE

• Real-Time Recommendations Using WebSockets and Redis - Ninad Divadkar, Intuit
https://youtu.be/OqgcTJHSjv8

Machine learning
can help to lower
the number of
errors in presenting
the wrong content
to a customer so
that customers stay
engaged and spend
more time in your
application.

https://redislabs.com/resources/webinars/past/?post_id=25513
https://www.slideshare.net/RedisLabs/redisconf17-realtime-intelligence-with-redisml-and-apache-spark
https://www.slideshare.net/RedisLabs/redisconf17-realtime-intelligence-with-redisml-and-apache-spark
https://youtu.be/OqgcTJHSjv8

PSEUDO CODE

Redis Real-Time Personalization 9

Search
Library and modules for high performance index and search

When users search for information, you want a specific set of results to pop up, and you want this to happen

in an instant. Using indexes within Redis or the RediSearch module, search can be implemented at blazing fast

speeds and customized to present users with auto-suggestions, auto-completion of searches and results can be

scored so they are most relevant to users.

TO LEARN MORE

• RediSearch - A High Performance Search Engine as a Search Module
https://redislabs.com/docs/redisearch-a-high-performance-search-engine-as-a-redis-module/

JSON/Geo/Graph
Intelligent handling of complex datatypes

Using built-in structures to capture data helps understand the user better and to personalize the experience.

Geo data, a user’s location, can help you provide recommendations based on where that user is. Knowing

where that user has shopped or dined, for example, can help you to provide specific recommendations that fit

the user’s lifestyle. You may also have location and transaction data for shoppers on your site; is the user shop-

ping at home? At work? Or interacting with your online store while in your brick and mortar locations? Where

does he or she browse versus purchase?

Redis automatically handles location data with built-in geospatial indices, and Redis modules such as ReJSON

or Redis Graph can handle variably structured data too.

TO LEARN MORE

• Redis for Geospatial Data
https://redislabs.com/docs/redis-for-geospatial-data/

• The Redis Graph module
http://redismodules.com/modules/redis-graph/

• The ReJSON module
http://redismodules.com/modules/rejson/

A Single, Unified Platform
The power of Redise for personalization and many other use cases is that all of the functions listed above are

part of one unified platform. Once you have your data in Redise, you can access it instantly in multiple ways

without having to worry about moving it back and forth between separate databases or worrying about wheth-

er each service will scale.

https://redislabs.com/docs/redisearch-a-high-performance-search-engine-as-a-redis-module/
https://redislabs.com/docs/redis-for-geospatial-data/
http://redismodules.com/modules/redis-graph/
http://redismodules.com/modules/rejson/

PSEUDO CODE

Redis Real-Time Personalization 10

Annotated Pseudo Code
To demonstrate the power of Redise in a way that will be easy for non-developers to digest and appreciate, an

annotated pseudo code example illustrates the use of Redise for real-time personalization and recommenda-

tions in an ecommerce store.

Personalization is a difficult challenge. It requires a full understanding of user interests and user behaviors

(purchasing) as well as the behavior of similar users and their purchases to drive recommendations that are

served up in real-time.

There are three sections to this app:

REDIS CAPABILITIES

CAPTURE

Gather and update all relevant data about the user’s
purchase history and about items on sale

Ingest millions of items per second

LEARN

Real-time analytics on all user data, the interests of
the user (behavioral and expressed), supplemented
by machine learning. Create recommendations per
user based on users who bought similar products
and who have similar interests.

• Express complex logic in a couple of lines of code

• Update transaction history in real-time

• Use machine learning techniques

PERSONALIZE

With all the hard work done and available in real-
time, offer the user personalized recommendations

With all data in memory, present user with
a personalized experience and compelling
recommendations.

In a real-world implementation, each of the sections could be designed as one or more microservices.

Replace hundreds of lines of code with a single command
Redis provides data structures as well as specialized commands that interact with those data struc-

tures. Without these commands, you would have to write the logic yourself and you would end up

writing hundreds of lines of codes. Commands that demonstrate this capability in the pseudo code

that follows include sismember, sadd, zadd, zrangebyscore, zrevrangebyscore, and others.

https://redis.io/commands

PSEUDO CODE

Redis Real-Time Personalization 11

 In this pseudo code example, we will demonstrate the basic data structures and decision making processes

around personalized recommendations. Our example is an online grocery store with an ecommerce applica-

tion that captures user purchases and items on sale among many other things. The application processes and

analyzes the data and makes the following personalization decisions:

1. Recommended products for a customer

2. Segmenting customers based on how frequently they purchase and how many purchases they make

3. Dynamic categorization of customers based on their declared interests and purchase behavior

4. Store other personalized messaging and customizations

Capture
Capture, map, and constantly update data about purchases and items on sale

Personalization applications must know as much as possible about the customer for whom recommendations are

being made. The Capture section shows how Redis data structures could be set up to collect that information.

Capture Data Structures
The following data structures are used to capture information about users, transactions, and items on sale.

Having all this data updated and available instantly is key to supporting real-time recommendations. Redise

handles millions of operations per second at sub-millisecond latency, so we can store and access instantly as

much data as we want.

Items on sale
This recommendations engine is designed to know which items are on sale so that users will be motivated
to “buy now” to get a special price. The Items on Sale data structure consists of a set of stock-keeping units
or SKUs that uniquely identify products that are on sale.

Transactions
Instantly accessible transaction history, with each item in the transaction along with the item count and
the price paid per item.

Purchases of each user
A sorted set that shows what the user bought and how many of each item.

Set of items sold, and its purchasers
We mapped the users to what they bought. Now we map the items to the users who bought them. In this
way we can find out who is the top purchaser of a particular item.

Transactions by user
How often are users making purchases? The transactions by user data structure maps users to transac-
tions and the timestamps for those transactions (for this pseudo code example, the timestamp is a date).

PSEUDO CODE

Redis Real-Time Personalization 12

Capture data structures

NAME TYPE STRUCTURE EXAMPLE

 Items on Sale Set skus: <SKU>... skus - 2572857 8275027 2525802

Transactions Hash transaction:<transaction_id>
item_count:<SKU> <count>
item_price_per_sku:<SKU> price

transaction:2989892
item_count:2572857 1
item_price_per_sku:2572857 199.99

Purchases of
each user

Sorted Set purchases_by_user:<userid> :
<count> <SKU>

purchases_by_user:82498217 1
2572857 5 8275027 12 2525802

Set of items
sold, and their
purchasers

Sorted Set sales_by_sku:<SKU> <count> <userid> sales_by_sku:2572857
1 82498217
4 2854389
10 2092339

Transactions by
user

Sorted Set transactions_by_user:<user_id> -
<tx_id> <timestamp>

transaction_by_user:82498217
298792 1/23/2017
2989892 3/12/2017
23985205 4/24/2017

Capture Methods
 The Capture methods in this pseudo code example illustrate some simple ways that Redis can track product

information and user behavior in preparation for making a recommendation.

Methods used include:

void addItemOnSale(sku)
Adds items to the set

boolean isItemOnSale(sku)
Says whether an item is available for sale

void newPurchaseTransaction(userid, purchaseItems, purchaseItemCount)
Executes a purchase transaction

PSEUDO CODE

Redis Real-Time Personalization 13

Capture items on sale

void addItemOnSale(String sku){
// add the stock keeping unit (sku) to the set using Redis SADD
// command
// SADD: Redis command, itemsOnSale: name of the set
redis.call("sadd", "items_on_sale", sku);

}

boolean isItemOnSale(String sku){

// returns true if sku is in itemsOnSale set, false otherwise
return redis.call("sismember","items_on_sale", sku);

}

 Capture transaction information

void newPurchaseTransaction(String userid, String[] purchaseItem,
String[] purchaseItemCount){

// Store the transaction data
// get a unique id for each transaction
String transactionId = getTransactionId();

// Create the transaction Hash data structure
// Iterate through the product list and update the data structure
redis.call("hset",transactionId, "userid", userid);

for(int i=0; i<purchaseItems.length; i++){

// Add transaction
redis.call("hset", transactionId, "item_count:"+ purchaseItem[i],
purchaseItemCount[i]);

// Track user purchases
redis.call("zincrby","purchases_by_user:"+userid,
purchaseItemCount[i], purchaseItem[i]);

// Update items sold to each customer
redis.call("zincrby", "sales_by_sku:"+purchaseItem[i],
purhaseItemCount[i], userid);

}

// Update the sorted set that holds all user transactions
redis.call("zadd", "transaction_by_user:"+userid, currenttime,
transactionId);

updateCustomerLeaderBoard(userid);

}

The first two methods are

utilities that, respectively, add

items to the set of items on

sale and check to see whether

a given item is on sale.

newPurchaseTransaction

is used to capture the data

related to a particular trans-

action. The number of items is

captured by SKU, and a leader

board is updated.

Everything happens
in real-time: We are
constantly updating
all the data structures
as purchases occur so
the latest information
is always available for
recommendations.

PSEUDO CODE

Redis Real-Time Personalization 14

Every purchase updates all the data structures.

Everything is being captured in real-time. When a

user logs in, we know instantly the items he has pur-

chased the most. And if an items is on sale, we also

know that immediately.

The Capture section of the code shows how Redis

can be used to get all relevant data, update it in re-

al-time, and create data structures that will serve as

the basis for real-time recommendations.

Advanced technique: Pipelining
All of the Redis calls in this section could

be pipelined for even greater efficiency.

Pipelining enables you to send multiple com-

mands to the server at once without waiting

for the replies at all. The client can then read

all the replies in a single step. Read more

about pipelining.

Learn
Real-time Analytics on User Interests and Behavior

 In the Learn segment, we seek to gain a full picture of everything users are interested in based on expressed

interests at sign up as well as user behavior (products they have looked at or purchased).

Learn Data Structures
In this section, we create a variety of data structures to analyze user interests and behavior, up to and including

creating recommendations for users.

Purchaser leaderboard
The purchaser leaderboard is a sorted set that
answers the question, who is buying the most?

Purchases in last N days by a user
How many purchases has the user made in the
last N days?

Recommendations for a user
Recommendations for a given user are captured
as a sorted set. This data structure is updated
based on two things: the interests selected by
the user and their purchases (which demonstrate
interests that may not have been indicated).

Global list of all user interest categories
A list of all the categories that users can express in-
terest in when they sign up or on their profile page.

The list of categories an item belongs to
We create a set for each item, with a list of cate-
gories that apply to that item.

Interest categories that the user selects
while signing up
For each user, we store a set of the interests they
selected when they signed up.

Interest categories based on user behavior
(purchases)
We store interest categories per user based on
their purchasing behavior.

Union of user category sets
We then create a set of all categories a user is
interested in, via a union of user-selected cat-
egories with behaviorally indicated categories
(purchases).

Recommendations for a user by category
We create a sorted set for each combination of
category and user to support recommendations
by category.

https://redis.io/topics/pipelining
https://redis.io/topics/pipelining

PSEUDO CODE

Redis Real-Time Personalization 15

Learn data structures

NAME TYPE STRUCTURE EXAMPLE

Purchaser
leaderboard

Sorted Set tx_count_leader_board - <score>
<userid>

tx_count_leader_board
113 2858233
172 1238752
233 8232334

Purchases in last N
days by a user

Sorted Set purchases_in_<n days>_by:<userid>
- <score> <userid>

purchases_in_7_by:2858233
4 3453432
6 3453212
9 435324

Recommendations
for a user

Sorted Set reco_items_for_user:<userid> -
<score> <itemid>

reco_items_for_user:2858233
53 435324
66 3453212
154 3453432

Global list of all
user interest cate-
gories

Set user_interest_category <set of
user interest categories>

user_interest_category - "dairy",
"produce", "bread", "organic"

The list of
categories an item
belongs to

Set item_to_categories_map:<sku>: <set
of interests>

item_to_categories_map:80708 -
"milk", "dairy", "organic"

Interest categories
that the user
selects while
signing up

Set categories_user_selected:<userid>
<set of categories - a subset of
global list>

categories_user_selected:9349720 -
"organic", "gluten_free"

Interest categories
based on
user behavior
(purchases)

Set categories_by_behavior:<userid>
<set of categories - a subset of
global list>

categories_by_behavior:9349720 -
"bread", "promo"

Union of user
category sets

Set Union of categories_user_
selected:<userid> and
categories_by_behavior:<userid>
interest_categories:<userid> <set
of categories - a subset of global
list>

interest_categories:9349720 -
"bread", "promo", "organic",
"gluten_free"

Recommendations
for a user by cat-
egory

Sorted Set reco_items_by_category:
<category>:user:<userid> - <items>

reco_items_by_
category:organic:user:8237292
10 3453432
90 3453212
200 435324

PSEUDO CODE

Redis Real-Time Personalization 16

Learn Methods
We use the following methods in the Learn section:

void updateCustomerLeaderBoard(userid)
Updates purchaser leaderboard

boolean is AmongTop1000(userid)
Says whether a customer is among the top 1000 users

String[] mostPurchasedItems(userid, topN)
Returns the top n purchased items of a user

String[] purchasesInLastNDays(userid, lastNDays)
Returns the items purchased by a user in last n days

void setRecommendationsByPurchaseHistory(userid)
Sets recommendations for a user based on their purchase behavior

void addUserInterestCategory(category)
Manages a global set of user interest categories

void setItemToCategoriesMap(item, category)
Manages the list of categories an item belongs to

void setUserToCategoriesMap(userid, category)
Manages the list of categories a user is interested in

void setDynamicUserBehavior(userid)
Updates user interest categories based on purchase history

void setRecommendationsByInterests(userid)
Uses Redis-ML module to set recommendations per category

How fast are we
updating those data
structures? Redis is an
in-memory database.
It handles millions of
writes per second,
enabling us to do
millions of updates
per second.

PSEUDO CODE

Redis Real-Time Personalization 17

// Update leaderboard for each transaction
// The customer who performs most transactions is
// the leader
void updateCustomerLeaderBoard(String userid){

redis.call("zincrby", "tx_count_leader_board", 1,
userid);

}

// Returns true if the user is among the top 1000 users
// based on the number of transactions
boolean isAmongTop1000(String userid){

// Find the reverse rank based on the number of
// transactions
int score = redis.call("zrevrank",
"tx_count_leader_board", userid);

if(score < 1000){

return true;
}

return false;

}

// Returns top n items purchased by each user
String[] mostPurchasedItems(String userid, int topN){

// This command reverse sorts the items purchased by
// the user
// based on the number of purchases and returns the
// topN items
String[] topSkuIds =

redis.call("zrevrangebyscore","purchases_by user:"
+userid, "+inf", "0", "limit", "0", topN);

return topSkuIds;

}

This section of code determines the top user

based on the number of purchases (rank on

the leaderboard). It also assesses wheth-

er the user is ranked in the top 1000 of all

purchasers (you might call them star users

or power users and offer them special deals

based on that status).

Depending on your ecommerce application,

you might rank users by amount spent, num-

ber of visits to the site, or other criteria.

You might also use this logic in the opposite

way and deliberately target users who are

either new or infrequent buyers to give them

extra incentive to become customers or more

frequent customers right now.

This section of the code returns a list of

what users are buying and the top items

each user buys.

PSEUDO CODE

Redis Real-Time Personalization 18

// Returns all purchases done by the user in the last N number of days
String[] purchasesInLastNDays(String userid, double lastNDays){

// Retrieve all transactions in the last N days
String[] txIdsLastNDays =

redis.call("zrevrangebyscore", "transaction_by user:"+userid, "+inf",
(currenttime - lastNDays));

// Clear the sorted set if it already exists
redis.call("del","purchases_in_"+lastNDays+"_by:"+userid);

// Iterate through each transaction and retrieve items purchased
for(int i=0; i<txIdsLastNDays; i++){

String[] txItems = redis.call("hgetall","transaction:"+txIdsLastNDays [i]);

for(int j=0; j<txItems; j++){
// Split the string, item:<skuid> to get the 2nd part
String skuId = txItems[j].split(":")[1];

// The next element in the array is the count
j++;
int count = txItems[j];

// add the item to the sorted set along with the count purchased
redis.call("zincrby","purchases_in_"+lastNDays+ "_by:"+userid, count, skuid);

}
}

return redis.call("zrevrangebyscore","purchases in_"+lastNDays+"_by:"+userid, +inf, 0,
"WITHSCORES");

}

PSEUDO CODE

Redis Real-Time Personalization 19

The setRecommendationsByPurchaseHistory method creates recommendations based on purchase history.

It generates a list of items to recommend to the user. In this example we compute it using the following procedure:

1. Get the top items purchased by the user, A. Let the items be 1, 2, 3, 4, 5

2. Get the list of other users who have purchased 1, 2, 3, 4, 5. Let the list of users be K, L, M, N, O, and P

3. Get the top items purchased by K, L, M, N, O, and P. Let the items be 4, 5, 6, 7, 8, 9. Now we can recommend 6,
7, 8, 9 - other items purchased by users who have purchased things this user has purchased.

This example demonstrates how you could apply sorted sets and their functions to build simple recommenda-

tions based on purchasing behavior.

void setRecommendationsByPurchaseHistory(String userid){

// get the top 5 purchased items by this user
// 5 is an arbitrary number
String[] items = getMostPurchasedItems(userid, 5);

// Prepare a set of other users who purchased these items.
// This is done by the UNION operation on sales_by_sku:<item> set
redis.call("zunionstore","reco_prep_users:"+userid, 5

"sales_by_sku:"+items[0],
"sales_by_sku:"+items[1],
"sales_by_sku:"+items[2],
"sales_by_sku:"+items[3],
"sales_by_sku:"+items[4],
"aggregate", "sum");

// Now we know people who purchased "X"also purchased "Y"
String[] usersWithCommonInterest = redis.call("zrange", "reco_prep_users:"+userid, 0, inf);

// Compute the union of all their purchases to arrive at the recommendations
for(commonInterestUser in usersWithCommonInterest){

redis.call("zunionstore","reco_items_for_user:"+userid,
2, "reco_items_for_user:"+userid, "purchases_by_user:"+commonInterestUser,
"aggregate","sum");

}

// Now reco_items_for_user:<userid> is a sorted set of items sorted by how many times
// they were purchased by similar users

}

PSEUDO CODE

Redis Real-Time Personalization 20

void addUserInterestCategory(String category){
redis.call("sadd", "user_interest_category", category);

}

void setItemToCategoriesMap(String item, String category){

// check if the category exists. If not, add it to the set
if(!redis.call("sismember", "user_interest_category", category)){

addUserInterestCategory(category);
}

// adds category to the set of categories associated with the item
redis.call("sadd", "item_to_categories:"+item, category);

}

// Allow the users to select their area of interest.
// Call this method to maintain user -> interests mapping
void setUserToCategoriesMap(String userid, String category){

// check if the category exists. If not, add it to the set
if(!redis.call("sismember", "userInterestCategory", category)){

addUserInterestCategory(category);
}

// Maintain user interest
redis.call("sadd", "categories_user_selected:"+userid, category);

}

 Even though users select their interest categories, sometimes their behavior shows that their real interests

are different from their stated interests. The setDynamicUserBehavior method evaluates a user’s purchase

patterns and determines their areas of interest based on the items they purchase. Here is how we determine it:

1. Pull the top n purchased items of a user. Say, 1, 2, 3, 4, 5.

2. Get the areas of interests associated with those products. Say m, n, o, p, q, r.

3. Store that information per user to drive recommendations.

void setDynamicUserBehavior(String userid){

String[] topPurchasedItems = mostPurchasedItems(userid, 10); // 10 is an arbitrary number

for(item in topPurchasedItems){
// categories_by_behavior:<userid> <- categories_by_behavior:<userid> UNION
// item_to_categories:<item>
redis.call("sunionstore", "categories_by_behavior:"+userid, "categories_by_behavior:"
+userid, "item_to_categories:"+item);

}
}

These methods,

addUserInterestCategory

and

setItemToCategoriesMap,

assign categories to us-

ers that can be used in

recommendations.

setUserToCategoriesMap

allows users to select their

area of interest.

PSEUDO CODE

Redis Real-Time Personalization 21

Enrich Recommendations with Machine Learning Models
Redis makes it easy to write code that leverages results from machine learning

models. Each category has a machine learning model that recommends items

based on attributes of a particular user. This section of the code shows how this

machine learning model is being leveraged to create recommendations.

One of the very powerful features of Redis is its modules, which provide special-

ized functionality that can be easily added and used. This section of the code uses

redis-ml, the machine learning module. Modules are continually being added;

other modules include Redis Graph, RediSearch, and ReJSON. These modules

provide a powerful way to enrich the way you use Redis.

Note that with machine

learning, while the model is

created by a data scientist, any

developer can use that model

in their code without exten-

sive expertise. This creates a

write-once, use-many scenario

where many developers can

leverage the work of data sci-

entists who create, train, and

tune machine learning models.

// Uses Redis machine learning module to recommend based on interests.
// The method assumes user interest categories are already established
void setRecommendationsByInterests(String userid){

// Sample data: "age:31", "sex:male", "food_1:pizza", "food_2:sriracha"
String[] featureVector = redis.call("hget", "userid:features");

// Merge user interests: combine user selected categories and dynamic purchase behavior
redis.call("sunionstore", "interest_categories:"+userid,

"categories_user_selected:"+userid, "categories_by_behavior:"+userid);

Category[] userInterestCategories = redis.call("smembers", "interest_categories:"+userid);

// For each category we have a machine learning model that will recommend the most suitable items
// according to the users feature vector. The models are trained on Spark and stored on Redis-ML.
for(category in userInterestCategories){

// Get all items of this category
String[] items = redis.call("smembers", "item_to_categories:"+category);
//for each category get a score from the random forest classifier
for(item in items){

category.itemScores[item] = RedisRandomForestClassify(forestId = "category:item",
featureVector)

}

// sort the classification results and get the top results to render recommendations
results[category] = category.itemScores.sort()[0:n_items]

// add recommended items for this user under each category
redis.call("sadd","reco_items_by_category:"+category+":user:"+userid, results[category]);

 }

}

The setRecommendationsByInterests method uses a machine learning model already trained to set specific

recommendations for each user.

PSEUDO CODE

Redis Real-Time Personalization 22

Personalize
Real-time Recommendations

Because of the work done so far, the live personalization of the user experience is the easiest part to code,

bringing everything done so far together like a symphony.

As the user logs into the application, Redis stores personalized information. Typically, the information includes:

User account information

User profile data
purchase history, recommendations, user interests

Personalize Data Structures
The Personalize session uses a session store that leverages data structures we’ve already created.

Personalize data structures

NAME TYPE EXAMPLE

Session
Store

Hash user:<userid>:session:<sessionid>
Elements in user:<userid>:session:<sessionid>
goldmember <yes/no>
purchase_history (pointer to the set that stores the history)
interest_categories (pointer to the set that stores interest categories for this user)
recommendations (pointer to the set that stores items recommended for this user)

Personalize Methods
setPersonalizedSession(user, session)
loads user profile information

PSEUDO CODE

Redis Real-Time Personalization 23

When a user arrives, this method computes the recommendations and stores them in the user’s session object so they

are ready to use. Because Redis works in real-time, the recommendations generated are always up to date.

void setPersonalizedSession(String userid, String sessionid){

// loads user account information - name, address, access controls
// This information is typically loaded from an identity manager
// and stored in a Hash data structure inside Redis
loadUserAccountInformation(userid, sessionid);

redis.call("hset", "user:"+userid+":session:"+sessionid, "goldmember", isFrequentUser(userid));
String[] purchaseHistory = mostPurchasedItems(userid, 10); // 10 is an arbitrary number

// Store purchase history
redis.call("sadd", "user:"+userid+":session:"+sessionid+":purchase_history", purchaseHistory)
redis.call("hset", "user:"+userid+":session:"+sessionid, "purchase_history",

"user:"+userid+":session:"+sessionid+":purchase_history");

// Compute recommendations by interests categories
setRecommendationsByInterests(userid);
// reco_items_by_category:<category>:user:<userid> gives the recommendations by interest

// Store user interests
setUserInterestCategoriesByBehavior(String userid);
redis.call("hset", "user:"+userid+":session:"+sessionid, "interest_categories",

"interest_categories:"+userid);

// Compute recommendations by purchase history
setRecommendationsByPurchaseHistory(userid);
redis.call("hset", "user:"+userid+":session:"+sessionid, "recommendations",

"reco_items_for_user:"+userid);

// Store other personalized information with the tags, userid and sessionid
}

Connect with us

Copyright © 2017 Redis Labs

Redis Real-Time PersonalizationPSEUDO CODE

Conclusion
Redis provides an incredibly powerful, robust and elegant way to create real-time

personalizations that are scalable, no matter how large your inventory or your

customer base. Our narration of how pseudo code would implement such an

application connects the general principles of Redis to the way they are used in

a common use case. We would like to thank Roshan Kumar for his work on the

pseudo code.

This paper is intended to get you started on the path to learning to think in Redis

and use it as a way to express the structure and implementation of scalable appli-

cations. If you found this approach useful, please contact us with suggestions for

other use cases and applications that are in need of explanation.

Redis provides an
incredibly powerful,
robust and elegant
way to create real-
time personalizations
that are scalable, no
matter how large your
inventory or your
customer base.

About CITO Research
CITO Research is a source of news, analysis, research and knowledge for CIOs, CTOs and

other IT and business professionals. CITO Research engages in a dialogue with its audience

to capture technology trends that are harvested, analyzed and communicated in a sophisti-

cated way to help practitioners solve difficult business problems.

Visit us at http://www.citoresearch.com

This paper was created by CITO Research and sponsored by Redis Labs

https://www.facebook.com/RedisLabs
https://twitter.com/redislabs
https://www.linkedin.com/company-beta/2014725/
https://www.youtube.com/channel/UCD78lHSwYqMlyetR0_P4Vig
http://www.citoresearch.com

	Redis and the Enterprise
	The Personalization App Implemented in Redis
	Capabilities That Support
Real Time Personalization
	Functions Essential
to Personalization
	Fast Data Ingest
	Caching/Session Store
	High Speed Transactions
	Analytics
	Machine Learning
	Job & Queue
	Search
	JSON/Geo/Graph
	A Single, Unified Platform

	Annotated Pseudo Code
	Capture
	Capture Data Structures
	Capture Methods

	Learn
	Learn Data Structures
	Learn Methods
	Enrich Recommendations with Machine Learning Models

	Personalize
	Personalize Data Structures
	Personalize Methods

	Conclusion

